麦肯锡的 Lilli 案例为企业 AI 市场提供了哪些发展思路?
撰文:Haotian
麦肯锡的 Lilli 案例为企业 AI 市场提供了关键发展思路:边缘计算 + 小模型潜在的市场机会。这个整合了 10 万份内部文档的 AI 助手,不仅获得了 70% 员工的采用率,而且平均每周使用 17 次,这种产品粘性在企业工具中实属罕见。以下,谈谈我的思考:
1)企业数据安全是痛点:麦肯锡 100 年积累的核心知识资产以及一些中小企业积累的特定数据都有极强数据敏感性,都不是和在公共云上处理。如何探索一种“数据不出本地,AI 能力不打折”的平衡状态,就是实际市场刚需。边缘计算是个探索方向;
2)专业小模型会取代通用大模型:企业用户需要的不是"百亿参数、全能型"的通用模型,而是能精准解答特定领域问题的专业助手。相比之下,大模型的通用性与专业深度之间存在天然矛盾,企业场景下往往更看重小模型;
3)自建 AI infra 和 API 调用的成本平衡:尽管边缘计算和小模型的组合虽然前期投入较大,但长期运营成本显著降低。试想若 45000 名员工高频使用的 AI 大模型来自于 API 调用,这产生的依赖,使用规模和品论的增加都会使得自建 AI infra 成为大中型企业的理性选择;
4)边缘硬件市场的新机会:大模型训练离不开高端 GPU,但边缘推理对硬件的要求则完全不同。高通、联发科等芯片厂商针对边缘 AI 优化的处理器正迎来市场良机。当每个企业都想打造自己的"Lilli",专为低功耗、高效率设计的边缘 AI 芯片将成为基础设施的必需品;
5)去中心化 web3 AI 市场也同步增强:一旦企业在小模型上的算力、微调、算法等需求被带动起来,如何平衡资源调度就会成为问题,传统的中心化的资源调度会成为难题,这直接会给 web3AI 去中心化小模型微调网络,去中心化算力服务平台等等带来很大的市场需求;
当市场还在讨论 AGI 的通用能力边界时,更喜闻乐见看到很多企业端用户已经在挖掘 AI 的实用价值。显然,相比过去比拼算力、算法的资源垄断式跃进,当市场把重心放到边缘计算 + 小模型方式时,会带来更大的市场活力。
(责任编辑:现货银)
- 股票场内撤单
- 怎么盗比特币
- 51信用管家瞬时贷怎么样?
- Ripple:人工智能预测 2025 年 5 月 20 日 XRP 价格
- 数字货币有什么好处 数字货币有什么好处有什么坏处
- 狗狗币(DOGE)暴涨78%后短暂回调,0.32只是起点,倒头肩形态预示百倍牛市!
- 星火币价格图片-星火提币教程
- 10月31日银河服务混合A净值下跌1.24%,近6个月累计下跌4.87%
- 卡牛信用管家里的极速贷是真的吗?
- 10月31日富国沪港深业绩驱动混合型C净值下跌0.58%,近1个月累计下跌1.22%
- 乐花花分期怎么样?
- 共和党内斗:共和党议员抨击马乔里众议员进行类似佩洛西的解放日股票交易
- 建筑业如何缴纳印花税
- 比特币价格飙升推动 Solana Memecoin 部署
- 10月31日长城智能产业混合A净值增长1.54%,近3个月累计上涨21.55%
- 天宁岛政府推翻否决,带领美国发行首个公共稳定币
- 太原空气质量为什么差-太原空气质量为什么差呢
- 迈克尔·诺沃格拉茨向美国SEC申请股票代币化,Galaxy Digital或成行业先锋
- 羽毛币行情价格
- 10月31日财通医药健康混合C净值下跌1.00%,近1个月累计下跌4.61%
- ok币 views+
- 0kx交易所官网 views+
- okx交易所app官网链接 views+
- 十大虚拟货币交易平台app views+
- 数字货币交易所 views+
- oe交易所app下载 views+
- 欧易app官方下载入口 views+
- 欧易交易所下载 views+
- 虚拟货币交易平台有哪些 views+